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Abstract: The addition of organolithium reagents to the C=-N bond of several cnflhrulosc-dcflved chiral (E)- 
and (Z)-ketoximc ethers has been shown to be highly diastereoselectivc for the (E)-isomers. A chelated 
transilion state has been p ~ s e d  to explain this n~ult The addition products were converted into the two 
c~,~-disub~tuted ¢-aminoacids (R)-2-(--}-methyisedne and .(R)-(+)-2-phenylsedne. 
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The addition of carbon nucleophiles to C=N bonds 1 is a synthetically important method of preparing 

various types of compounds of biological importance such as aminopolyols 2 and non-proteinaceous 

aminoacids. 3 The latter are very useful both as enzyme inhibitors and for the synthesis of peptidomimetics. 4 

Among them, ¢x,Qt-disubstituted ct-aminoacids, which contain a nitrogen atom bound to a quaternary carbon, 

have attracted a particular interest. 5 There are few methods of preparing such compounds in enantiopure form. 

Most of them rely on alkylation of giycine enolate anion equivalents) '~ This fact puts some limits to their 

applicability, as certain c¢-aminoacids such as those with ot.tert-alkyl or ~x-aryl substituents cannot be easily 

prepared in this way. We herein report that the addition of organolithium reagents to chiral ketoxime ethers 

(E)- and (Z)-2a/2b takes place with often high stereocontrol to yield the differentially protected aminopolyols 

3/4 (eqs 1-3). These aminoalcohols can be converted into enantiopure ct,a-disubstituted ot-aminoacids, 

including those not easily available by previous methodologies. 
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There are few reports on diastereoselective additions to the C=N bond of chiral ketone imino derivatives, 

and most of them refer to reduction processes. 6 In contrast, the diastereoselective additions of carbon 
nucleophiles has been investigated only in a very limited number of cases. 7"9 We have previously reported on the 
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diastereoselective addition of organometallic reagents to the C=O bond of O-protected L-erythrulose 

derivatives la / lb .  ~° Through reaction with O-benzyl hydroxylamine, these compounds were converted into E/Z 
mixtures of the corresponding ketoxime ethers 2aJ2b, which were then separated into pure geometrical isomers 

by column chromatography (eq 1). These oximes were at least 98*/, optically pure, as confirmed by NMR 

analysis of Mosher derivatives (MTPA residue instead of TPS). Either of the stereoisomers of 2aJ2b was then 

subjected to reaction with various organometallic reagents (eqs 2-3). The results are presented in Table I. 

Table 1. Stereoisomer Distribution in the Addition of 
Organolithium Reagents to Chiral Oximes 2a/2b. a 

Entry Oxime RLi T b Yield c 3 / 4 d 

l (E)-2a MeLi 0 91 93 : 7 

2 (E)-Zb MeLi 0 71 >95:5  

3 (Z)-2a MeLi 0 62 25:75  

4 (Z)-2b MeLi 0 41 23 :77  

5 (E)-Za nBuLi --78 73 93 : 7 

6 (E)-Zb nBuLi --78 95 >95:5  

7 (Z)-2a nBuLi 0 42 30 : 70 

8 (Z)-2b nBuLi 0 Dec. = 

9 (E)-Za tBuLi --78 60 >95:5  

10 (E)-2b tBuLi --78 Dec. 

11 (Z)-Za tBuLi 0 Dec. = 

12 (Z)-2b tBuLi 0 Dec? 

13 (E)-2a PhLi --78 70 >95:5  

14 (E)-2b PhLi --78 85 >95:5  

15 (Z)-2a PhLi 0 68 75:25 

16 (Z)-2b PhLi 0 70 68:32  

17 (E)-2a allylLi --78 73 80:20  

18 (E)-2b allylLi --78 50 >95:5  

19 (Z)-2a allylLi --78 61 33:67  

20 (Z)-2b allylLi --78 50 13:87 

"All reactions were performed in Et20. The reaction time was 
I hour in all cases, although some of the reactions, mostly 
those of the (E) isomers, were complete in less than 15 rain. 
bln degrees (°C). COverall yield (%) of both stcreoisomers. 

aDetcrmined by IH/13C NMR. SAt lower temperatures, a 
partial recovery of the starting material was the only result. 

The relatively hindered ketoximes 2a/2b were 

not very reactive. Only organolithium derivatives 

were able to add to the C=N bond with subsequent 

formation of various N-tert-alkyl O-benzyl hydroxyl 

amines 3/4. The reactions were in general quite 

diastereoselective, most particularly in the case of the 

(E) isomers, where the minor diastereoisomer was in 

most cases not detectable by NMR spectroscopy. In 

fact, the (E) isomers proved both more reactive and 

more diastereoselective than their (Z) counterparts. 

This may be due to the formation of a five-membered 

co-chelate (see below) involving the lithium, nitrogen 

and oxygen atoms of the {x-OR group, ld'7'" This 

allows the prediction of a preferred approach from 

the less hindered si side of the C=N bond and the 

predominant formation of aminopolyols 3a/3b, in line 

with observations. Most likely, the (Z) isomers react 

through a non-cyclic transition state of the Felkin- 

Anh type, 1d'12 which leads predominantly to the 

opposite stereoisomers 4a/4b. 13,14 

"":. .......... \ .°- / 

! J 
As an example of the synthetic potential of the 

aforementioned products, we have prepared the 

aminoacids (R)-(--)-2-methylserine 10 and (R)-(+)-2- 

phenylserine 12 in optically pure form. Desilylation of 

3a (R=Me or Ph) followed by treatment with 

carbonyldiimidazole, gave rise to oxazolidinones 5 

and 6, respectively, in 85% overall yield. Acetonide 

cleavage, two-step oxidation of the diol moiety and 
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esterification of the crude acid fielded 7 and 8 (40% overall yield for the four steps), which wore then 

hydrolized under basic conditions. This afforded the corresponding N-benzyloxy aminoacids 9 and 11, 

hydrogenolysis of  which furnished, respectively, (R)-(--)-2-methylserine 10, mp 248-250 ° (dec.), [ot]n -6.3 

(H20, c 1.1), and (R)-(+)-2-phenylserine 12, mp 225-230 ° (dec.), [ct] n +19.5 (H20, c 0.3), in 50°,4 yield from 7 

and 8. The physical data and optical rotation of synthetic 10 were identical to those reported in the 

literature. 5b'Sd'l~ The aminoacid 2ophenylserine has previously been described only in racemic form, ~6 although a 

derivative with unknown configuration was obtained in 67% ee via a metal-catalyzed process.17 

BnO 0 
R_ jNHOBn \ R _  ~1--~' BnO O R _NHR" 

~ - - : a  MeOCCr/~ _ _.~ 8OOC 
. . . ~ O  5 R=Me 7 R=Me 9 R=Me R'=OBn 

(R = Me, Ph) 6 R=Ph 8 R=Ph 10 R=Me R'=H 
11 R=Ph R'=OBn 
12 R=Ph R'=H 

Reaction conditions, a) TBAF, THF, RT. b) CDI, CeHe, A (85% overall), c) (CH2SH)2, TsOH, CHCI3, A. d) NalO4, 
aq THF. e) NaCIO2, aq tBuOH, f) CH2N2 (40% overall), g) aq NaOH/EtOH, RT. h) H2, PdlC, MeOH (50% overall). 

The methodology we describe in this communication is therefore very useful for the preparation of many 

types of ct,ct-disubstituted ct-aminoacids. Furthermore, intermediates 3/4 carry several hydroxyl groups, a fact 

which opens the way to the synthesis of other biologically relevant, polyfunctionalized compounds, such as 

polyhydroxylated aminoacids, TM diaminoacids, 19 N-hydroxy aminoacids, 2° branched aminosugars, 21 etc. Finally, 

since D-erythrulose derivatives enantiomeric to laJlb are also easily available, 1°̀ '22'23 all the aforementioned 

compounds can be prepared in either antipodal form. Efforts in these directions are now in progress. 
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